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Abstract 

Weapon systems that function destructively (e.g. missile or 
torpedo) are to be acquired in a lot of size m. Acceptance of the lot 
is based on the result of an operational test, administered to part of 
the lot: if the test results indicate positive operational value the lot 
is accepted and the remaining part of the lot if fielded; otherwise 
the lot is "rejected". 

A test plan is designed that establishes an optimal number of 
weapon copies to test, given (models of) the operational gain of the 

fielded weapon under two tactical options, and the uncertainty in 
the weapon's predicted probability of success after the test is 
complete. The major test objective is to realize possible operational 
utility from the lot of items, and secondarily to demonstrate 
arbitrary levels of certainty. 
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Methodology for an 
Operationally-Based Test Length Decision 

Donald P. Gaver 

Patricia A. Jacobs 

1. Problem Formulation 

A new, or upgraded, item (for example, but not necessarily, a weapon) is to 

be produced and introduced into service provided it passes a test of its 

effectiveness and suitability. The test envisioned consists of employing the item 

in a typical mission and assessing the outcome as a success or failure. Tests are 

destructive: each test means that the tested item is lost, but its record is available: 

summarized as either success or failure. It is recognized that a more sensitive 

measure that accounts for degree of success, such as miss distance, may be 

available and preferable, but treatment of this option is deferred for the present. 

Likewise, non-destructive and reliability-growth settings can receive similar 

treatment; for discussion of a reliability growth problem in a similar context, see 

Gaver and Jacobs (1997). 

Suppose that m items will be produced or bought in a lot. An option is to test 

t (0 < t < m) of them and choose whether to accept or reject the entire lot on the 

basis of the test. Clearly a small test (e.g. based on firing a few missiles, perhaps 

2) conveys less information about the item than does a larger one. But a large test 

means that only a few are left for field deployment. We intend to provide a 

formulation that links the information provided by a test to the effect of that 



information upon eventual operational performance. We indicate that it is also 

possible to affect the decision as to how the item is "best" employed in the field, 

i.e. to assess the value based on simple tactical changes. The present formulation 

is intentionally simplified, but it forces a choice that is often only implicit in 

practice. The general methodology can be extended to include many more 

realistic details. We plan to do so in subsequent work. 

2. Uncertainty, Information, and Operational Gain 

Assume that the item has a constant but unknown probability of success, p. 

Whether to field a weapon depends on the value of p, which will ultimately be 

revealed, but still with uncertainty, with the assistance of a physical operational 

test. An option is to make t (t either 0 (no tests), 1, 2, ...w) tests and then decide 

whether p seems to be large enough. (Note that if t = m maximum information 

will be procured, but nothing is left for use!) 

Whether p is large enough can be based on a model of the weapon 

effectiveness as used operationally. The following is a simple option: when the 

weapon is actually used it is fired at an opponent; the latter, if missed, has the 

option to fire back. Letting vw be the value of a win, meaning a weapon kill of the 

enemy target, and vt being the value of a loss, possibly meaning the loss of the 

weapon-firing platform, and q being the success probability of enemy counterfire 

(assumed known for simplicity), then 

Gi(p,t; m) = (m- t\vwp -v£(l- p)q] (2.1) 

is the total expected gain from fielding a weapon with success probability p 

having made t tests, so (m -1) future engagements are actually possible. One can 

also account for the cost, and/or availability, of the actual missile; this is not 

done here. 



The subscript on G\ signifies that 1 weapon firing will occur per engagement. 

Alternatively we can contemplate firing a 2-weapon salvo, in which case we put 

Gz(p,*; m) = [^J[^(l" (1" V?) -Ml- pfq] (2.2) 

where LxJ is the largest integer less than or equal to x. Another option is shoot- 

look-shoot, and there are many others; these are not considered in this paper. 

The above, of course, is conditional on the particular operational setup 

envisioned, perhaps importantly characterized by range of engagement, but also 

target type, relative orientation, altitude, and other factors. Certainly both 

(unknown) p, and response probability, q, may depend sensitively on such 

conditions. In what follows we assume that all tests are conducted under one set 

of operational conditions and target tactics. 

There are many different and more elaborate options for expression of net 

gain, but analysis of the above is itself instructive. A basic issue is, of course, how 

to specify numerical values for the gain and loss parameters, vw and V£, or at least 

their ratio. Most literally, vw could be equated to the monetary cost to an 

opponent of replacement of the item (e.g. targeted platform) that the missile 

attempts to kill; vi represents the same to the missile shooter. More cogently, the 

value chosen for vw should reflect the military value of destroying the targeted 

opponent, this being very large if, for example, the opponent platform threatens 

a major component of one's own force, such as a battlegroup's carrier. The 

degree of that threat could be quantitatively assessed by exercise of an 

appropriate wargame or modeling exercise, conducted offline; such an exercise 

could also lead to an appropriate (relative) value for V£. Initially, however, expert 

judgment would likely be used to set tentative values, thus supporting a test 

decision. The inevitable initial subjectivity should stimulate more intensive 

examination of tradeoff issues, and lead to better approaches to quantifying vw 



and V£, such as by modeling and simulation combined with careful scrutiny of 

historical information. 

Decision Logic 

If the decision maker knows the value of p then he opts not to test (t = 0) and 

presumably evaluates G,-(p, 0; m): if it is (sufficiently) positive he accepts the system 

and fields it, while if it is negative he rejects the system, achieving a gain of zero. 

This is, of course, again oversimplified. For one thing, the particular weapon 

system's mission might be alternatively performed by a similar predecessor 

system, so the gain of the prospective new item should be compared to that of 

the predecessor. There might also be a quite different alternative to which it 

could be compared. Thus the gain functions above are merely illustrative, 

intended to be provocative and to stimulate analytical thinking (often the most 

important objective of a model). In any case the decision as to whether to accept 

or reject the system often reduces to assessing the evidence that the actual 

probability of success, p, exceeds some threshold value, v_. For instance for gain 

function G\ it can be seen that in order for the acceptance system to have positive 

gain p = V£q/(vw + vtf) is that threshold. The threshold picked is thus dictated by 

the actual operational situation envisioned, including opponent response and 

relative platform values. 

Uncertainty in p: Bayes Approach to Acceptance, Given a Test 

The decision to test if leads to acquisition of data assumed entirely 

summarized as s successes (s = 0,1,2,..., t). These data can now be used to create 

a likelihood for p by use of a binomial model, and, if p is endowed with a beta 

prior, a beta posterior for p: 

n{p;s,t) = B{a',ß')pa'-\l-pf-1 (2.3) 



where </ = a + s, and ß = ß + t-s, the values (a, ß characterize the original prior 

density for p. This is the classical conjugate prior setup, see Berger (1985), and is 

invoked for convenient and flexible illustration; other options could be used. 

Then a decision maker in possession of (2.3) should use it to evaluate the gain, 

which can be done by computing its expectation with respect to the posterior 

probability distribution. In the case of G\ the linear form gives 

E[G1(p,f;m)|s,f] = (m-f)[^E[pIs,f]-üi(l-E[p|s,%] (2.4) 

for the expected gain if the system is fielded. An appropriate decision rule may 

be: 

Field  the  system if   E[Gi(p,f;m)|s,fl  is positive; 

otherwise "reject". This is equivalent to fielding if 

E[p|s,t] > p = V£Cj/(vw + vfl). Because of the form of Gi 

this is also equivalent to s > s(t). 

How Much to Test 

The previous step indicates what decision to make, given test number t, and 

outcome s(t) successes. Now take the position of the decision maker before any 

tests are made. She must consider testing to any level, i.e. t = 0,1, 2,..., m. The 

prediction used must depend on the binomial model and upon the prior, which 

is assumed to be the same beta prior with parameters a and ß 

4p) = B(a/ß)pa-\l-p)ß-1 (2.5) 

conditional upon p, 

P{s(t) = fy,t} = ^y(l-ptS (2.6) 

In order to predict s(t) simply remove the condition on p: 



b(s,t)=p{s(t)=+}=jf'V (i - pf^V^K-'P - r)M<tp 

'ft r(a+ß) r{a+s)r(ß+t-s) 
ATr(a)rOS)'    r(a+ß+t) 

(2.7) 

= fc(s-l,f) 
^f + t-sYa-l + s" 

The expectation of gain, i.e. E[G\] depends on s(t), which is unknown at the time 

of test planning, but whose predictive probability distribution is (2.7), the well- 

known beta-binomial. Consequently predict the expectation of future gain by 

calculating 

E[tf(h{p,t;m)p(t),i§ = {m-t) a + s 

s^s(t) 
(2.8) 

This can in principle be evaluated for "all" t values, 0,1, 2,...; practically, start 

small and continue while the predicted expected gain first increases and then 

decreases - if it indeed starts small, increases, and then ultimately declines, as 

will often be the case. The optimal test time, t*, can then be easily selected. It may 

well happen that an initial prior will be distributed optimistically, suggesting the 

decision not to test at all. Prudence suggests that such a decision be over-ridden, 

if only to try to reveal some totally unanticipated, and unmodeled, system flaw. 

Conversely, a test might suggest virtue in a system evaluated very poorly a priori 

It is difficult to imagine that any serious decision maker would accept a new 

system without direct evidence as to its operability. 

3. Acceptance Risk 

In the previous section a procedure to determine a "best" number of tests, t*, 

based on an operationally relevant gain was discussed. In this section we 

consider measures of risk associated with acceptance after t* such tests. Recall 



that acceptance means that s(t*) > s(t*) where s(t*) is the smallest number of 

successes allowed in the t* tests if acceptance is to occur. The measures of risk are 

as follows: 

a) The conditional expected value of the probability of future mission success, 
given Acceptance 

2 Mr^O 
5>c(f* | 

p(t) = E^Accept] = -{ '   (3.1) 
JL l{s,t j 

s>s(f*) 

where Ms, t) is defined in (2.7). 

b) The conditional distribution of the number of successes in the remaining 
tn-t* weapons, given Acceptance 

Let M be the number of successes using the remaining (m -1*) weapons. 

PIM = JfcUf*) = s, Accept] 

*' 
m-t   L.k/i    j\m-t -k r (a + jS+f*) 

-irVr*-*       r(a+s,r(^-s) 
xP

a+s-\l-Vf
+^-s)-ldp (3.2) 

Jm-f]     r{a+ß + t*)       r(a+s+k)T{ß-s+m-k) 
k J r{a + s)r(ß+t*-s) T(a + ß+m) 

for s > s(t *). 

Thus, 

2  PJM = k|s(f*) = sWs/) 

P{M = fc|Accept} = -^-^ j—j-  (3.3) 



where b(s, t) is defined in (2.7). It is also instructive to compute the above given 

that the decision rule is overridden: the number of successes fell below g(f*) but 

the system is accepted despite this fact. 

4. A Two-Weapon Salvo is Fired at a Target 

Once again assume that the weapon has a constant unknown probability of 

success, p. However, a salvo of two weapons is fired at a target. Presumably, this 

doctrine will allow acceptance of a weapon with a smaller value of p than if only 

one weapon were fired per target. The total expected gain from fielding a 

2 
future weapon with success probability p having made t tests, so 

engagements are actually possible, is given by Gity, t) m) in (2.2) where bcj is the 

largest integer less than or equal to x. Now, however, individual missions are 

twice as costly as before in terms of weapon expenditure. 

We assume in what follows that if t weapons are tested, then they are fired 

one at a time (this may well be poor testing practice). Thus the result of a test that 

fires t weapons is summarized as the number of successes to occur, sit), (s(t) = 

0,1,..., t). In this case the expected gain if the system is fielded given s(t) and t 

m-t 
E[G2(p,f;m)|S,t]= VL± ^E[l-(l-p)2|s,f]-^[£[(l-p)2|s,f]?]] 

2 

m-t 
v-w ~ (vw + ^)E[(! " P)

2
M]} 

(4.1) 

Assuming the beta prior distribution, (2.5) as before, the predictive 

distribution of s(t) is given by (2.7). The prediction of the expectation of future 

gain if test t weapons and accept the lot if the number of successes is greater than 

or equal to g(0 is 

8 



E{E[G2(p,t;m)\s(t)/t]} 

m-t -2 
s>s(t) 

vw-{vw + veq) 
{ß + t-s+l){ß + t-s) 

KsA 
(4.2) 

\a + ß + t+\){a + ß+t)\ 

A best number of tests, tj, is that t-value, here t<i and s\h\ that maximizes the 

right-hand side of (4.2). 

Acceptance Risk 

In this section we consider measures of risk associated with acceptance after t* 

tests. Recall acceptance means s(t*) > s(f) where s(t*) is the smallest number of 

successes allowed in the f tests for acceptance to occur. 

a) The conditional expected value of the probability of future mission success 
given Acceptance, when two weapons are salvoed per target 

p2(t) = E[l-(l-P)2\Accept] = ^. 

1    (ß + t-s + l)(ß+t-s) 
(a + ß+t + l)(a + ß+t) b(s,t) 

s>s{t) 

(4.3) 

where Ms, t) is defined in (2.7). 

b) The conditional distribution of the number of successful target kills in the 
remaining m-t* weapons, given Acceptance, when two weapons are used 
per target 

Let M be the number of successes using the remaining (m - f) weapons. Since 

two weapons are used per target, N(m, f) = m-t 
targets can be engaged. 

P{M = ^,Accept}=|fNKt*)](l-(l-P)2)k[(l-p)2]N(m/)-t 

x l    ;    /   .^(I-PF ~srldP 

(4.4,a) 



k      )n=0 

^a + ß+t*} 

T(a+s)r(ß 

} VnJT{a+s)T[ß+t -s) 

(m/)-2*) + t -s + 2n + 2N\ 

r(a+ß+1 * + In+2N(m, t *) - 2k) 

(4.4,b) 

for s^stt*). 

Thus, 

X  P{M = k)s}b(sS) 

P{M = k\Accept}=     K ' ,   M  

where b(s, t) is defined in (2.7). Under certain circumstances, e.g. for large 

m-values, the alternating series form (4.4,b) becomes ill-conditioned, and it is 

preferable to carry out a numerical integration to evaluate (4.4,a). 

5. Numerical Examples 

We now exhibit numerical examples to illustrate the theory. Tables 1-3 

present results of evaluating best policies and their acceptance risks for both one- 

weapon and two-weapon salvoes. In all the examples the beta prior has mean 

a/a + ß= 5/6 = 0.83 for a = 5 and ß=l. Table 1 presents results for the one- 

weapon salvo for number of missiles in the (small) lot sizes m = 15 and 30; value 

of win, vw = 1; success probability of enemy counterfire q = 0.7; and various 

values of loss, V£. Table 2 presents corresponding results for a two-weapon salvo. 

It is apparent that as the value of loss becomes higher (i.e. at V£ = 25) the optimal 

number of tests suggested, and that must be passed, explodes for m = 15, (f = 14, 

leaving one(!) to be fielded), and is over half the lot size for m = 30; this in spite of 

a strong prior probability of single shot success. This requirement is much 

10 



reduced if two-weapon salvoes are fired, with expected gain much higher as 

well. But the two-missile salvoes only apply to one-half as many missions. 

For the large missile lot of m = 100 it is again apparent that the possible loss of 

a highly expensive platform (vi = 25, vs. vw = 1) implies that conservative testing 

be done: in this case fielding is recommended if just over one-third of the lot is 

tested with, literally, no more than one failure allowed. But our methods allow 

estimation of expected gain whatever the test outcome, usefully informing a 

decision maker of the (conditional expected) gain whatever the test outcomes. 

This is more realistic in practice than is adherence to a "drop-dead" binary 

policy. 

There is apparently a premium on buying, and testing, relatively large missile 

lots. The unmodeled costs include that of the possibility that the opponent will 

adapt to or counter new designs or tactics (e.g. raise q, or change engagement 

conditions) before the lot is consumed. It is also possible that a new system 

design will render the current design items obsolete or degraded in storage 

before all are used up; however, an upgrade may be possible. 

11 



TABLE 1 
No Testing 

(Prior-Based) 

a = 5, ß = 1, vw = 1, q = 0.7 

One-Weapon Salvo 

m Expected Prob, of 
Success 

Prob, of All 
Successes 

Expected # of Successes 
(Std. Dev.) 

15 0.83 0.25 12.5 (2.5) 

25 0.83 0.14 25 (4.6) 

Testing: Optimal Number of Tests and Risks 

<X=5, ß=l, vw = l, q-0.7 

One-Weapon Salvo 

vi m Optimal 
# of tests 

Min. # of 
Successes 
Needed to 

Accept 

Max. 
Gain 

Conditional 
Expected 
Prob, of 
Success 
Given 
Accept 

Conditional 
Prob, of All 
Successes in 
Remaining 

Missiles 
Given Accept 

Expected 
Number of 

Successes in 
Remaining 

Missiles 
(Std. Dev.) 

5 15 1 1 4.2 0.86 0.3 12 (2.12) 

15 15 9 9 0.5 0.93 0.7 5.6 (0.70) 

25 15 14 14 0.02 0.95 0.95 0.95(0.05) 

5 30 2 2 8.8 0.86 0.2 24.5 (3.5) 

15 30 11 11 1.92 0.94 0.46 17.9 (1.45) 

25 30 18 18 0.60 0.96 0.66 11.5 (0.83) 

12 



TABLE 2 

No Testing 

(Prior-Based) 
a = 5, ß= 1, vw = 1, q = 0.7 

Two-Weapon Salvo 

m Expected Prob, of 
Success 

Prob, of All 
Successes 

Expected # of Successes 
(Std. Dev.) 

15 0.95 0.78 6.67(0.75) 

25 0.95 0.66 14.3 (1.4) 

Testing: Optimal Number of Tests and Risks 
a = 5, ß=l, vw = l, g = 0.7 

Two-Weapon Salvo 

vt m Optimal 
# of tests 

Min. # of 
Successes 
Needed to 

Accept 

Max. 
Gain 

Conditional 
Expected 
Prob, of 
Success 
Given 
Accept 

Conditional 
Prob, of All 
Successes in 
Remaining 

Missiles 
Given Accept 

Expected 
Number of 
Successes in 
Remaining 

Missiles 
(Std. Dev.) 

5 15 0 0 5.5 0.95 0.78 6.67 (0.75) 

15 15 1 1 3.4 0.96 0.82 6.75 (0.62) 

25 15 3 3 2.2 0.98 0.89 5.87(0.42) 

5 30 0 0 11.0 0.95 0.66 14.3 (1.4) 
15 30 4 3 7.08 0.97 0.76 12.6 (0.86) 
25 30 6 5 5.10 0.98 0.81 11.7(0.66) 

13 



TABLE 3 
Testing: Optimal Number of Tests and Risks 

a = 5, ß=l, vw = l, q = 0.7 
One-Weapon Salvo 

*>t m Optimal 
#of 
tests 

Min. # of 
Successes 
Needed to 

Accept 

Max. 
Gain 

Conditional 
Expected 
Prob, of 
Success 
Given 
Accept 

Mode of 
Conditional 
Dist. of # of 
Successes in 
Remaining 

Missiles 

Expected 
Number of 

Successes in 
Remaining 

Missiles 
(Std. E>ev.) 

0 100 0 0 83.3 

5 100 10 8 33.3 0.89 Mode = 90 
0.07 

73.6 (8.6) 

15 100 23 22 10.7 0.95 Mode = 77 
0.18 

73.1 (3.8) 

25 100 37 36 5.2 0.97 Mode = 63 
0.29 

60.9 (2.4) 

No 
testing 

100 0 0 0.83 Mode = 100 
0.05 

83.3 (14.5) 

TABLE 4 
Two-Weapon Salvo 

V£ m Optimal Min. # of Max. Conditional Mode of Expected 
#of Successes Gain Expected Conditional Number of 
tests Needed to Prob, of Dist. of # of Successes in 

Accept Success 
Given 
Accept 

Successes in 
Remaining 

Missiles 

Remaining 
Missiles 

(Std. Dev.) 

5 100 0 0 39.3 0.95 Mode = 50 
0.46 

47.6 (4.0) 

15 100 8 6 26.3 0.97 Mode = 46 
0.57 

44.8 (2.1) 

25 100 10 8 20.7 0.98 Mode = 45 
0.61 

44.1 (1.7) 
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